If $\omega$ is a cube root of unity, then find the value of determinant $\begin{vmatrix} 1+\omega &\omega^{2} &-\omega \\ 1+\omega^{2}&\omega &-\omega^{2} \\ \omega^{2}+\omega&\omega &-\omega^{2} \end{vmatrix}$
If $x, y, z$ are distinct real numbers, then
$$
\begin{vmatrix}
x & x^{2} & 2 + x^{3} \\
y & y^{2} & 2 + y^{3} \\
z & z^{2} & 2 + z^{3}
\end{vmatrix} = 0
$$
Then find $xyz$.
A homogeneous system has a non-trivial solution $\iff$ the determinant of its coefficient matrix is $0$.
Coefficient matrix $A=\begin{bmatrix}4 & k & 2\\ k & 4 & 1\\ 2 & 2 & 1\end{bmatrix}$. Hence,
$$
\det(A)=
\begin{vmatrix}
4 & k & 2\\
k & 4 & 1\\
2 & 2 & 1
\end{vmatrix}
=-(k-4)(k-2).
$$
Setting $\det(A)=0 \Rightarrow -(k-4)(k-2)=0 \Rightarrow k=2 \text{ or } k=4.$
Therefore, the number of values of $k$ is $\boxed{2}$.