Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MCA NIMCET Previous Year Questions (PYQs)

MCA NIMCET Differential Equation PYQ


MCA NIMCET PYQ
The curve satisfying the differential equation ydx-(x+3y2)dy=0 and passing through the point (1,1) also passes through the point __________





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution

Given: \(y\,dx-(x+3y^{2})\,dy=0 \;\Rightarrow\; y\,\dfrac{dx}{dy}=x+3y^{2}\).

So \( \dfrac{dx}{dy}-\dfrac{1}{y}x=3y\) (linear). Integrating factor \(=\exp\!\int\!-\dfrac{1}{y}dy=\dfrac{1}{y}\).

\(\displaystyle \frac{d}{dy}\!\left(\frac{x}{y}\right)=3 \;\Rightarrow\; \frac{x}{y}=3y+C \;\Rightarrow\; x=3y^{2}+Cy.\)

Through \((1,1)\): \(1=3(1)+C(1)\Rightarrow C=-2\). Hence curve: \(x=3y^{2}-2y\).


MCA NIMCET PYQ
The solution of (ex + 1) y dy = (y + 1) edx is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2017 PYQ

Solution

Question: Solve $(e^x+1)\,y\,dy=(y+1)\,e^x\,dx$.

Solution:

Separate: $\dfrac{y}{y+1}\,dy=\dfrac{e^x}{e^x+1}\,dx$

Integrate: $y-\ln(y+1)=\ln(e^x+1)+C$

Answer (implicit): $\boxed{\,y-\ln(1+y)=\ln(1+e^x)+C\,}$

Equivalently: $\dfrac{e^{y}}{y+1}=K(1+e^x)$.

Answer : $e^y=k(y+1)(1+e^x)$


MCA NIMCET PYQ
The solution of the differential equation $\dfrac{dy}{dx}=e^{x+y}+x^2e^y$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2017 PYQ

Solution

$\dfrac{dy}{dx}=e^y(e^x+x^2)\ \Rightarrow\ e^{-y}dy=(e^x+x^2)dx$

$\int e^{-y}dy=\int (e^x+x^2)dx$ $\Rightarrow\ -e^{-y}=e^x+\dfrac{x^3}{3}+C$

Hence, $e^{-y}+e^x+\dfrac{x^3}{3}=C$ (or $y=-\ln\!\big(C-e^x-\dfrac{x^3}{3}\big)$).

Answer: $\boxed{e^{-y}+e^x+\dfrac{x^3}{3}=C}$ ✅



MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...