Step 1: Define a helper polynomial:
\[ g(x) = f(x) - (x + 1) \]
Given: \( f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5 \Rightarrow g(1) = g(2) = g(3) = g(4) = 0 \)
So, \[ g(x) = A(x - 1)(x - 2)(x - 3)(x - 4) \quad \Rightarrow \quad f(x) = A(x - 1)(x - 2)(x - 3)(x - 4) + (x + 1) \]
Step 2: Use \( f(0) = 25 \) to find A:
\[ f(0) = A(-1)(-2)(-3)(-4) + (0 + 1) = 24A + 1 = 25 \Rightarrow A = 1 \]
Step 3: Compute \( f(5) \):
\[ f(5) = (5 - 1)(5 - 2)(5 - 3)(5 - 4) + (5 + 1) = 4 \cdot 3 \cdot 2 \cdot 1 + 6 = 24 + 6 = \boxed{30} \]
✅ Final Answer: \( \boxed{f(5) = 30} \)
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.