Step 1: Let’s define the function:
\[ f(x) = (x - 1)^2 (x + 1)^3 \]
Step 2: Take derivative to find critical points
Use product rule:
Let \( u = (x - 1)^2 \), \( v = (x + 1)^3 \)
\[
f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2
\]
\[
f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)]
\]
\[
f'(x) = (x - 1)(x + 1)^2 (5x - 1)
\]
Step 3: Find critical points
Set \( f'(x) = 0 \): \[ (x - 1)(x + 1)^2 (5x - 1) = 0 \Rightarrow x = 1,\ -1,\ \frac{1}{5} \]
Step 4: Evaluate \( f(x) \) at these points
\[ f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125} \]
Step 5: Compare with given form:
It is given that maximum value is \( \frac{3456}{3125} = 2^p \cdot 3^q / 3125 \)
Factor 3456: \[ 3456 = 2^7 \cdot 3^3 \Rightarrow \text{So } p = 7, \quad q = 3 \]
✅ Final Answer: \( \boxed{(p, q) = (7,\ 3)} \)
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.