Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



The maximum value of $f(x) = (x – 1)^2 (x + 1)^3$ is equal to $\frac{2^p3^q}{3125}$  then the ordered pair of (p, q) will be





Solution

Maximum Value of \( f(x) = (x - 1)^2(x + 1)^3 \)

Step 1: Let’s define the function:

\[ f(x) = (x - 1)^2 (x + 1)^3 \]

Step 2: Take derivative to find critical points

Use product rule:
Let \( u = (x - 1)^2 \), \( v = (x + 1)^3 \)
\[ f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2 \] \[ f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)] \] \[ f'(x) = (x - 1)(x + 1)^2 (5x - 1) \]

Step 3: Find critical points

Set \( f'(x) = 0 \): \[ (x - 1)(x + 1)^2 (5x - 1) = 0 \Rightarrow x = 1,\ -1,\ \frac{1}{5} \]

Step 4: Evaluate \( f(x) \) at these points

  • \( f(1) = 0 \)
  • \( f(-1) = 0 \)
  • \( f\left(\frac{1}{5}\right) = \left(\frac{1}{5} - 1\right)^2 \left(\frac{1}{5} + 1\right)^3 = \left(-\frac{4}{5}\right)^2 \left(\frac{6}{5}\right)^3 \)

\[ f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125} \]

Step 5: Compare with given form:

It is given that maximum value is \( \frac{3456}{3125} = 2^p \cdot 3^q / 3125 \)

Factor 3456: \[ 3456 = 2^7 \cdot 3^3 \Rightarrow \text{So } p = 7, \quad q = 3 \]

✅ Final Answer:   \( \boxed{(p, q) = (7,\ 3)} \)



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...