Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



If ${{x}}_k=\cos \Bigg{(}\frac{2\pi k}{n}\Bigg{)}+i\sin \Bigg{(}\frac{2\pi k}{n}\Bigg{)}$ , then $\sum ^n_{k=1}({{x}}_k)=?$





Solution

Sum of Complex Roots of Unity

Given:

\[ x_k = \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right) = e^{2\pi i k/n} \]

Required: Find: \[ \sum_{k=1}^{n} x_k \]

This is the sum of all \( n^\text{th} \) roots of unity (from \( k = 1 \) to \( n \)).

We know: \[ \sum_{k=0}^{n-1} e^{2\pi i k/n} = 0 \] So shifting index from \( k = 1 \) to \( n \) just cycles the same roots: \[ \sum_{k=1}^{n} e^{2\pi i k/n} = 0 \]

✅ Final Answer:   \( \boxed{0} \)



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...