Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET

Previous Year Question (PYQs)



Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If $\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$, then f(2) is





Solution

Given it has extremum values at x=1 and x=2
⇒f′(1)=0  and  f′(2)=0
Given f(x) is a fourth degree polynomial 
Let  $f(x)=a{x}^4+b{x}^3+c{x}^2+dx+e$
Given 
$\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$
$\lim _{{x}\rightarrow0}\lbrack1+\frac{a{x}^4+b{x}^3+c{x}^2+\mathrm{d}x+e}{{x}^2}\rbrack=3$
$\lim _{{x}\rightarrow0}\lbrack1+a{x}^2+bx+c+\frac{d}{x}+\frac{e}{{x}^2}\rbrack=3$
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0  & e=0
Substituting x=0 in limit 
⇒ c+1=3
⇒ c=2
$f^{\prime}(x)=4a{x}^3+3b{x}^2+2cx+d$
$x=1$ and $x=2$ are extreme values,
⇒$f^{\prime}(1)=0$ and $f^{\prime}(2)=0
⇒ $4a+3b+4=0$ and $32a+12b+8=0$ 
By solving these equations
we get, $a=\frac{1}{2}$ and $b=-2$
So,
$f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}$
⇒$f(x)=x^{2}(\frac{x^{2}}{2}-2x+2)$
⇒$f(2)=2^{2}(2-4+2)$
⇒$f(2)=0$



Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...