Let $y = [\cos(x^2)]^2$. Using the chain rule:
\[ \frac{dy}{dx} = 2\cos(x^2)\cdot \frac{d}{dx}\big(\cos(x^2)\big) \] \[ = 2\cos(x^2)\cdot\big(-\sin(x^2)\cdot 2x\big) \] \[= -4x\,\cos(x^2)\sin(x^2). \] Using $\;2\sin u\cos u=\sin(2u)$ with $u=x^2$: \[ \frac{dy}{dx} = -2x\,\sin\!\big(2x^2\big). \]
Answer: ${\dfrac{dy}{dx}=-4x\,\sin\!\big(x^2\big) \cos (x^2)}$
$\dfrac{d}{dx}(x^3) = 3x^2$
$\dfrac{d}{dx}(e^x) = e^x$
$\dfrac{d}{dx}(3x) = 3$
$\dfrac{d}{dx}(\cot x) = -cosec^2 x$
Therefore, total derivative $= 3x^2 + e^x + 3 - cosec^2 x$
Answer: $\boxed{3x^2 + e^x + 3 - cosec^2 x}$ ✅
Let $y=-\log(\log x)$
$\dfrac{dy}{dx}=-\dfrac{d}{dx}[\log(\log x)]$
$\dfrac{d}{dx}[\log(\log x)]=\dfrac{1}{\log x}\cdot\dfrac{1}{x}$
Therefore, $\dfrac{dy}{dx}=-\dfrac{1}{x\log x}$
Answer: $\boxed{-\dfrac{1}{x\log x}},\; x>1$ ✅
Online Test Series, Information About Examination,
Syllabus, Notification
and More.
Online Test Series, Information About Examination,
Syllabus, Notification
and More.