NIMCET PYQ 3
$$
\frac{d^{2}x}{dy^{2}} \; = \; ?
$$
$
(a) -\left(\dfrac{d^{2}y}{dx^{2}}\right)^{-1}\left(\dfrac{dy}{dx}\right)^{-3}
$
$ (b) \left(\dfrac{d^{2}y}{dx^{2}}\right)\left(\dfrac{dy}{dx}\right)^{-2}
$
$
(c) -\left(\dfrac{d^{2}y}{dx^{2}}\right)\left(\dfrac{dy}{dx}\right)^{-3}
$
$
(d) \left(\dfrac{d^{2}y}{dx^{2}}\right)^{-1}
$
Go to Discussion
NIMCET Mathematics PYQNIMCET Differentiation (Disha JEE) PYQ
Solution

NIMCET PYQ 2
If y = cos2 x2 , find dy/dx
Go to Discussion
NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ
Solution
Let $y = [\cos(x^2)]^2$. Using the chain rule:
\[
\frac{dy}{dx} = 2\cos(x^2)\cdot \frac{d}{dx}\big(\cos(x^2)\big) \] \[ = 2\cos(x^2)\cdot\big(-\sin(x^2)\cdot 2x\big) \] \[= -4x\,\cos(x^2)\sin(x^2).
\]
Using $\;2\sin u\cos u=\sin(2u)$ with $u=x^2$:
\[
\frac{dy}{dx} = -2x\,\sin\!\big(2x^2\big).
\]
Answer: ${\dfrac{dy}{dx}=-4x\,\sin\!\big(x^2\big) \cos (x^2)}$
NIMCET PYQ 1
The derivative of (x3 + ex + 3x + cotx) with respect to x is
Go to Discussion
NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ
Solution
$\dfrac{d}{dx}(x^3) = 3x^2$
$\dfrac{d}{dx}(e^x) = e^x$
$\dfrac{d}{dx}(3x) = 3$
$\dfrac{d}{dx}(\cot x) = -cosec^2 x$
Therefore, total derivative $= 3x^2 + e^x + 3 - cosec^2 x$
Answer: $\boxed{3x^2 + e^x + 3 - cosec^2 x}$ ✅
NIMCET PYQ 1
Differentiate [- log(log x), x > 1] with respect to x
Go to Discussion
NIMCET Previous Year PYQNIMCET NIMCET 2017 PYQ
Solution
Let $y=-\log(\log x)$
$\dfrac{dy}{dx}=-\dfrac{d}{dx}[\log(\log x)]$
$\dfrac{d}{dx}[\log(\log x)]=\dfrac{1}{\log x}\cdot\dfrac{1}{x}$
Therefore, $\dfrac{dy}{dx}=-\dfrac{1}{x\log x}$
Answer: $\boxed{-\dfrac{1}{x\log x}},\; x>1$ ✅
[{"qus_id":"3369","year":"2018"},{"qus_id":"3784","year":"2018"},{"qus_id":"4311","year":"2017"},{"qus_id":"4312","year":"2017"},{"qus_id":"4314","year":"2017"},{"qus_id":"10681","year":"2021"},{"qus_id":"10685","year":"2021"},{"qus_id":"11123","year":"2022"},{"qus_id":"11152","year":"2022"},{"qus_id":"10221","year":"2015"},{"qus_id":"10349","year":"2013"}]